

WJEC 2014 Online Exam Review

GCE Electronics ET2 1142-01

Candidates' performance across questions

?	?	?	?	?	?	?	
Question Title	N	Mean	S D	Max Mark	F F	Attempt %]
1	883	5.1	1.5	6	85.5	99.1	
2	857	3.4	2.1	6	56.5	96.2	
3	883	4	2.4	7	56.7	99.1	
4	870	3.5	2	6	59.1	97.6	
5	868	4.8	2.5	8	59.9	97.4	
6	843	3	1.7	5	60.7	94.6	
7	839	3.4	2.5	8	42.9	94.2	\leftarrow
8	862	3.3	1.7	7	47.1	96.8	\leftarrow
9	831	3	2.5	7	42.4	93.3	\leftarrow

7. A simple 3V regulated power supply is required for a portable media player to be used with a 12V car battery.

The zener diode requires a **minimum** current of 8 mA to maintain the zener voltage.

(a)		power supply should be able to supply load currents up to $250\mathrm{mA}$. culate the ideal value of resistor R .	[3]
•••••			
•••••	•••••		
(b)		ect the preferred value of resistor that you would use from the E24 series. (son for your choice.	Give a
(c)		output of the car battery varies, and can reach 14.5 V. battery output is now 14.5 V. Calculate:	
	(i)	the voltage across the zener diode;	[1]
	(ii)	the voltage across resistor R;	[1]
	(iii)	the power dissipated in resistor R.	[2]
	•••••		

7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.

(a)	The power supply should be able to supply load currents up to $250\mathrm{mA}$. Calculate the ideal value of resistor R. 258 m A / (-, ($^{-}$) ×	[3]
	I 258×10-3	
	1. 46.5 W / t	
(b)	Select the preferred value of resistor that you would use from the E24 series. Giv reason for your choice.	e a [1]
	47N jeouse 16's the	
,,,,,,	Closest ba to the ideal value	
(c)	The output of the car battery varies, and can reach 14.5 V. The battery output is now 14.5 V. Calculate:	
	(i) the voltage across the zener diode;	[1]
	(ii) the voltage across resistor R; V/I/C 14.5-3:11.5	[1]
	(iii) the power dissipated in resistor R.	[2]
	PN = IV = 0.25 x lus [e11.5	******
	P: Z-8w	
	1 0-25A	

7. A simple 3V regulated power supply is required for a portable media player to be used with a 12V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.

(a)	The power supply should be able to supply load currents up to 250 mA. Calculate the ideal value of resistor R. [3]	\$ 2
	± 258×6-3 D	
	1- 46.5N jet	
	* -	
(b)	Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice. [1]	0
	Closest Ba to the ideal value X D	
	Closest by to the ideal value X D	
(c)	The output of the car battery varies, and can reach 14.5 V. The battery output is now 14.5 V. Calculate:	
	(i) the voltage across the zener diode; [1]	/
	(i) the voltage across the zener diode; [1] (ii) the voltage across resistor R; [1]	1
	(iii) the power dissipated in resistor R. [2]	2
	Puc IV: 0.25 x lus ? e.11.5	
	P: 7-8w/et t. 47 Vet.	
		- g

(1142-01)

© WJEC CBAC Ltd.

7. A simple 3V regulated power supply is required for a portable media player to be used with a 12V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.

(a) The power supply should be able to supply load currents up to 250 mA. Calculate the ideal value of resistor R.

[3]

250482258mA

12-3=9

9-0258 = 36.8

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.

Support up to 250 in A

- (c) The output of the car battery varies, and can reach 14.5 V. The battery output is now 14.5 V. Calculate:
 - The battery output is now 14.5 V. Calculate:

 (i) the voltage across the zener diode;

3.627 [1]

(ii) the voltage across resistor R;

10,875

(iii) the power dissipated in resistor R.

eek-

[2]

NO.875 - 33#1X10.875 = 3.58 W

A simple 3V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.

The power supply should be able to supply load currents up to 250 mA. (a)

Calculate the ideal value of resistor R. [3] 250+8=258mA

Select the preferred value of resistor that you would use from the E24 series. Give a (b) reason for your choice.

te 250mA V

The output of the car battery varies, and can reach 14.5 V. (c) The battery output is now 14.5 V. Calculate:

the voltage across the zener diode; 3.625 (i) (ii) the voltage across resistor R;

the power dissipated in resistor R. (iii)

A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.

(a) The power supply should be able to supply load currents up to 250 mA. Calculate the ideal value of resistor R.

[3]

12-0.7=11.3X

Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.

The output of the car battery varies, and can reach 14.5 V. (c) The battery output is now 14.5 V. Calculate:

the voltage across the zener diode; 3.625

- the voltage across resistor R; (0.875
- the power dissipated in resistor R. (iii)

P=VI V=10.875 P=3.67

7. A simple 3V regulated power supply is required for a portable media player to be used with a 12V car battery.

The zener diode requires a **minimum** current of 8 mA to maintain the zener voltage.

(a) The power supply should be able to supply load currents up to 250 mA. Calculate the ideal value of resistor R.

[3]

 $\frac{11.3}{8\times10^{3}} = 1412.6 \qquad 260 + 11.3 \qquad 11.3 \qquad 12.3 = 14.3$

11.3 - 43.798 268×103 ~ 13.80

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice. [1]

43. R soit can give more suit doen't out out

(c) The output of the car battery varies, and can reach 14.5 V. The output is now 14.5 V. Calculate:

(i) the voltage across the zener diode; 3.626 [1]

- (ii) the voltage across resistor R; (O. 875 [1]
- (iii) the power dissipated in resistor R. [2]

P = VI V = 10.876 0 = 3.67 I = 0.34

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_B$ and I_C are taken.

- (a) As the base current is increased from 0.2 to $0.8\,\mathrm{mA}$ the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as I_B is increased from 0 to 1 mA. The transistor does not saturate. [1]

(b)	A second graph was drawn to show how $V_{\rm OUT}$ changed as $V_{\rm IN}$ was increased 0 to 6 V.	from
V _{OUT}	A	
	15	
	5-	
	0 1 2 3 4 5 6 V _{IN}	/ V
	Use the graph to determine:	
	(i) the minimum value of $V_{\mbox{\scriptsize IN}}$ required to saturate the transistor;	[1]
	(ii) the value of $V_{\rm OUT}$, when $V_{\rm IN}$ = 3.1 V.	1-1
		[1]
(c)	$V_{\rm IN}$ = 3.1 V and the load resistor = 120 Ω .	
	Calculate the collector current and the power dissipated in the transistor.	[3]
		············

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_{\rm B}$ and $I_{\rm C}$ are taken.

- (a) As the base current is increased from 0.2 to $0.8\,\mathrm{mA}$ the collector current increases from 16 to $64~\mathrm{mA}$ and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as $I_{\rm B}$ is increased from 0 to 1 mA. The transistor does not saturate. [1]

	(ii)	Determine the current gain $(h_{\rm FE})$ of the transistor.	
		0.8	******
	**********	0. <u>2</u>	********
¬ (b)	A sec	cond graph was drawn to show how V_{OUT} changed as V_{IN} was increased $^{5}\text{V}.$	from
V_{OUT}	/ V		
	20- 15- 10- Use t	the graph to determine:	V
	(i)	the minimum value of V_{IN} required to saturate the transistor;	[4]
	(ii)	the value of V_{OUT} , when V_{IN} = 3.1 \checkmark V.	
S ì	X /	6υ	[1]
(c)	V _{IN} =	= 3.1 V and the load resistor = 120Ω .	
1	Calcu	ulate the collector current and the power dissipated in the transistor. 3.12 6: $120 = 0.05A$	[3]
<i>p</i>	- /k	V 0.95x6=0,3w,	

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{IN},\,V_{OUT},\,I_B$ and I_C are taken.

- (a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as I_B is increased from 0 to 1 mA. The transistor does not saturate. [1]

=4	
$\frac{0.8}{0.2}$ =4 χ	
A second graph was drawn to show how V_{OUT} changed as V_{IN} was increase to 6 V.	reased from
/ V	
20 T 15 10	
	V _{IN} / V
0 1 2 3 4 5 6	
Use the graph to determine: (i) the minimum value of V_{IN} required to saturate the transistor;	
4.61	[1]
(ii) the value of V_{OUT} , when V_{IN} = 3.1 V .	[1]
$V_{\rm IN}$ = 3.1 V and the load resistor = 120 Ω .	
Calculate the collector current and the power dissipated in the transistor. 3.1 6. $120 = 0.05 A$ $= 14V$ 0.95 $\times 6 = 0.3W$ $= 14V$	[3]
= 1xV 0.95x6= 0.3w /et.	

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_{\rm B}$ and $I_{\rm C}$ are taken.

- (a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as $I_{\rm B}$ is increased from 0 to 1 mA. The transistor does not saturate. [1]

Determine the current gain (h_{FE}) of the transistor.

FAFF = IE SUSXION 80 X103

 $^{\sim}$ (b) A second graph was drawn to show how V_{OUT} changed as V_{IN} was increased from 0 to 6 V.

Use the graph to determine:

the minimum value of V_{IN} required to saturate the transistor;

(ii) the value of V_{OUT} , when V_{IN} = 3.1 V.

 $V_{\rm IN}$ = 3.1 V and the load resistor = 120 Ω .

Calculate the collector current and the power dissipated in the transistor.

[3]

15/20 = 0.125 = Ic

P=VXI 3.1X0.125 = 0.3875

~0.39 w

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_B$ and I_C are taken.

- (a) As the base current is increased from 0.2 to $0.8\,\mathrm{mA}$ the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as $I_{\rm B}$ is increased from 0 to 1 mA. The transistor does not saturate. [1]

<i>[</i>	AFE .	= Ic Ib	(h_{FE}) of the	. 80 x/	03 W		,
	graph was	drawn to	show how V	$T_{ m OUT}$ change	d as V_{IN} was	increased from	
0 to 6 V.							
r / V							
15							
10						And	
85 H							
						V _{IN} /V	
0	1	2	3	4	5	6	
Use the gr	aph to dete	rmine:					
(i) the r			equired to sa	turate the tr	ansistor;		
	4.6	5 V V				[1]	
(ii) the v	/alue of	$_{ m JT}$, when $V_{ m J}$	_{IN} = 3.1 V.				
·	51	/ V				[1]	1
W - 24V	/ and the le	ad register	- 1200				
111	/ and the lo			dissipated in	the transister	roı	١,
Calculate 1		./2 <i>5</i> =		dissipated if	the transistor.	[3]	(
(2/2	0-2-0	125 -	- 1c				
//2	_						

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_{\rm B}$ and $I_{\rm C}$ are taken.

- (a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as $I_{\rm B}$ is increased from 0 to 1 mA. The transistor does not saturate.

(ii) Determine the current gain $(h_{\rm FE})$ of the transistor.

hfe = Ic 0.8 mA = 0.012

(b) A second graph was drawn to show how $V_{\rm OUT}$ changed as $V_{\rm IN}$ was increased from 0 to 6 V.

Use the graph to determine:

(i) the minimum value of V_{IN} required to saturate the transistor;

4.60

[1]

(ii) the value of $V_{\rm OUT}$, when $V_{\rm IN}$ = 3.1 V.

6 V

[1]

(c) $V_{IN} = 3.1 \text{ V}$ and the load resistor = 120Ω .

Calculate the collector current and the power dissipated in the transistor.

[3]

P = V1

0.08 m = 3.1 x 0.02583

7 = 0 : 0 1593 A

 $T_c = \frac{15}{120} = 0.125$

1

Potentiometer R is varied and readings of $V_{\rm IN},\,V_{\rm OUT},\,I_B$ and I_C are taken.

- (a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
 - (i) Complete the graph below to show how the ammeter readings change as $I_{\rm B}$ is increased from 0 to 1 mA. The transistor does not saturate. [1]

4	ii)	Determine the	current	gain	(h_{n-})	of the	transistor
	11)	Doloi III III II III	Carrotte	90111	(AARE)		ti ai ioiotoi.

 $hfe = \frac{Ic}{Ib} \frac{0.8 \text{ mA}}{64 \text{ m.k}} = 0.0125$

Use the graph to determine:

(i) the minimum value of $V_{\mbox{\scriptsize IN}}$ required to saturate the transistor;

[1]

(ii) the value of $V_{\rm OUT}$, when $V_{\rm IN}$ = 3.1 V.

- 6 v

11

(c) $V_{\rm IN}$ = 3.1 V and the load resistor = 120 $\Omega.$

Calculate the collector current and the power dissipated in the transistor.

P=VI 72-0.01593A

 $0.08 \, \text{W} = 3.1 \times 0.02583$

 $T_c = \frac{15}{120} = 0.125 \text{ X}$

3

0

Examiner

9. A system is required to turn on a 12 V, 2 A lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- · the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $V_{REF} = 3V$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

[7]

END OF PAPER

© WJEC CBAC Ltd.

(1142-01)

9. A system is required to turn on a 12 V, 2 A lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, V_{REF} = 3 V;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

[7]

END OF PAPER

9. A system is required to turn on a 12V, 2A lamp automatically at night.

The specification for the system is:

- the system requires a 12V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $V_{REF} = 3 \text{ V}$;
- · the light sensing sub-system;
- · a facility for adjusting the light level at which the lamp comes on;
- · the transistor switch;
- the output sub-system.

[7]

6

END OF PAPER

© WJEC CBAC Ltd.

(1142-01)

3. A system is required to turn on a 12 V, 2 A lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $V_{REF} = 3 V$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

[7]

END OF PAPER

9. A system is required to turn on a 12V, 2A lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- · the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, V_{REF} = 3 V;
- · the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- · the transistor switch;
- · the output sub-system.

[7] 5

END OF PAPER

9. A system is required to turn on a 12 V, 2 A lamp automatically at night.

The specification for the system is:

- the system requires a 12V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $V_{REF} = 3 V$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

[7]

END OF PAPER

© WJEC CBAC Ltd.

(1142-01)

9. A system is required to turn on a 12V, 2A lamp automatically at night.

The specification for the system is:

- the system requires a 12V power supply;
- the light level at which the lamp comes on should be adjustable;
- · the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V.

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, V_{REF} = 3 V;
- · the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- · the transistor switch;

· the output sub-system.

12V o

END OF PAPER

[7]